
Pulse

By Philip Smith and Ross Fifield



Table of Contents

Conceptualization and Ideation 3
Process 4

Design and Technical Implementation 5
Design 5
Technical Implementation 8

Critical Reflection and Evaluation 12
Choice of controller 12
Game type 13
Product evaluation 13
Potential commercialisation 13

Youtube URL 14
Github Repository 14
Download Link 14



Conceptualization and Ideation
The conception point for this project was to consider a range of graphical and

visualisation techniques which may be suitable in a game development environment. A
range of ideas were considered, such as implementation of Voxels for terrain generation, the
use of AR mobile phone technology and GPS applied in a pervasive gaming environment,
but initial discussions quickly settled on the visualisation of echolocation as a game
mechanic. Such an idea is hardly new and has successfully been implemented in modern
creative industry media such as Marvel’s Daredevil or Christopher Nolan’s Batman
adaptation of The Dark Knight.

Translating such techniques from broadcast media into interactive media may
provide a rich and enjoyable aesthetic and offer relatively unexplored technical
implementations of gameplay.

Ideation focused on defining and choosing between a selection of potential prototype
projects surrounding echolocation technology. The functional aspects of such a technique
could be utilised in a variety of ludic contexts, as shown in Figure 1.

Figure 1. Initial Ideation



Process
The team had a relatively short window in which to produce a functional prototype and so
key milestones and objectives were programmed over a week-long project plan, as outlined
in Figure 2. The workflow methodology used was MoSCoW (a priority planning technique
dividing all work into four categories: Must-have, Should-have, Could-have and Won’t-have).

Figure 2. Project Plan



Design and Technical Implementation

Design
Working within the scope of the project, the team decided to focus on the sonar

mechanic as a navigation tool. Due to the decision to make every visual object in the scene
pitch black without the sonar effect, the sonar mechanic is an essential tool for navigating
the level:

Figure 3. and 4. Before and After sonar is activated

The sonar applies a semi-transparent effect on the objects it interacts with, meaning
that by using it, the player can not only see around them, but through objects next to them.



Figure 5. and 6. Showcasing the transparency of objects under the sonar effect

Objects of different purposes show up with different colours under the sonar. 4
different types of objects are accounted for to be graphically distinct using colour indicators:
FOOD, Tools, Danger, and Environment. While the demo does not have all 4 present, the
initial testing stages demonstrated the effects of Tools, Danger and Environment, with FOOD
and Environment being included in the final demo.

Figure 7. Test Scene demonstrating 3 colors being used for different objects



There are three different means of use available for the sonar. The first is the local
pulse, which sends out a sonar effect that reveals the geometry of the environment in a
limited radius around the player.

Figure 8. Local Sonar Effect

The second effect is a ranged pulse that is sent out based on where the player’s
mouse is placed. When it hits an object, the sonar pulse is instantiated on the object’s
surface.

Figure 9. Ranged Sonar Effect

The last action is the sonar recap, which reactivates sonars at each coordinate the
player activated their sonar beforehand. The game keeps track of up to 25 sonars, 24 if not
including the current new sonar effect.



Figure 10. Sonar Recap Effect, with all previous sonars going off at once

Technical Implementation
The graphical effect of the sonar mechanic is built off of the foundation of a Unity

package created by Keijiro Takahashi (https://github.com/keijiro/SonarFx). In this package,
Takahashi created a shader that mimics the effects of sonar waves. It came with two modes
representing two different sonar effects. One simulated a constant directional sequence of
waves, all going in a singular direction. The other was spherical, simulating a sonar wave
that emanated out from a single point. Our implementation focused solely on the spherical
instance. In the original code, the shader was applied as a replacement shader for the whole
scene using the camera through the C# script SonarFx.cs. This meant that every object in
the scene, regardless of previously declared properties, would adopt the sonar shader:

Figure 11. OnEnable function in original SonarFx.cs script

Additionally, in the original implementation, SonarFx.cs focused on manipulating
variables at the shader level:

https://github.com/keijiro/SonarFx


Figure 12. Original Update() function from SonarFx.cs

This had to change for the purposes of the game’s intended design, as it was
required for the graphical effect to change based on the type of object it was applied to and
where it was instantiated from. Therefore, it was decided to replace the functionality of
manipulating the Shader elements directly with a functionality manipulating the same
elements through the available materials in the scene:

Figure 13. New Update() function for Pulse, altering shader attributes on the Material level

The significant new elements added include the variable _originArray, which passes
a vector4 array containing all of the 3D coordinates from where a sonar had been called to



activate, and the function GetOriginArraySize(), which returns an integer that represents how
many of those sonar locations in _originArray should be activated at a given time. By using a
4-dimensional vector to pass in 3-dimensional information, we were able to use the 4th
element as a simple indicator to the program of whether a sonar effect should be activated at
said position. Furthermore, the shader is no longer automatically applied to every object.
This leaves flexibility for future development in case some objects require slightly different or
completely different shaders.

Outside of the altered SonarFx.cs, there is the completely new script
EchoManager.cs. This script manages the 3D objects in the scene that are affected by the
sonar effect and determines how they are affected, the latter referring to what colour they
show up as under the sonar waves. The function Echo()carries out this functionality, going
through 4 different lists of objects generated from the scene based on their tags: FOOD,
Tools, Danger, and Environment:

Figure 14. FOOD loop instance in Echo() that changes the attributes of all objects in the scene
classified as ‘FOOD’, and stores the colour of the material to create a fading effect later in the code

Additionally, EchoManager instantiates and calls SonarFx.cs to store the sonar
activation coordinates on _originArray for future use once the sonar effect concludes its life
cycle:



Figure 15. Once the sonar effect ends, the coordinate vector of the current sonar effect is appended
to the array at the second slot, moving all other stored coordinates down by one, deleting the vector in
the last available slot

Finally, there is PublicSonarShader, a public-access, altered version of the hidden
shader file provided by Takahashi’s package. While the Math Takahashi used in the shader
was not altered in order to retain the sonar effect, a few additions were implemented for the
sake of the tech demo’s purpose. Firstly, the elements mentioned before, _originArray and
its size, play vital roles in determining where and how many sonar effects occur.

Figure 16. For every 4D vector in the array according to _SonarArraySize, check that they are tagged
as active (4th-element is 1) and then find the distance between the fragment

Then an additional variable passed in, _Radius, determines how far the effect travels
out from the center:

Figure 17. Set w to 0 if the distance between the point in the world and the sonar origin is too far
based on the Radius



Finally, to create the translucent x-ray effect, the Sub Shader properties were altered
to allow for transparency:

Figure 18. Settings necessary for transparency applied in the Sub-Shader

And the shader determines that if the Emission (which represents the hues of the
wave) equates to a magnitude larger than the 0 vector, then to set the alpha of the surface to
0.7, giving it a semi-transparent effect. Else, the shader becomes opaque again at alpha 1.

Figure 19. If either of Emission’s elements are over 0, apply transparency. If not, make the material
opaque.

Critical Reflection and Evaluation

Choice of controller

The first task was to implement the 3 C’s - Camera, Character and Controller. Initial
discussions could have led the game type and consequent application of technology in a
variety of directions. An early idea was to consider the use of echolocation as a navigation
tool and so we chose to implement a physics based controller. This turned out to be
unnecessary and created some bugs. The player could for example over rotate and in some
cases clip through scenery entirely. Such issues did result in us considering how we were
going to apply echolocation. It could be used for perception, navigation, as a detection tool
and in a sound based game, perhaps even as a given functional use in interacting with
terrain, scenery and other agents.



Game type
The application of this technology is of course one of the big issues surrounding its

use. A variety of different game genres were considered and we quickly pivoted from an
open, platformer style game to an enclosed maze style game. We felt that the technology
could be best used as a detection and navigation tool and so our implementation choices
started pivoting towards this kind of game as a result.

This is reflected in the inclusion of ‘enemy’ and ‘food’ types of objects, which would in turn
return different kinds of echos and result as visual cues for gameplay. One entertaining idea
we considered is that this technology could be utilised in both ‘push’ and ‘pull’ types of
games, which is perhaps somewhat novel. It could just as easily appear in a stealth game
where avoidance and stealth were key elements of gameplay, as it could appear in ‘hunting’
style games, where the player had to hunt down enemies in a maze. Our feeling was that
this multi-functional usage should not be disregarded in future ideation.

Product evaluation
As mentioned previously, the player controller was initially designed as a physics

based control, in order to facilitate emergent and divergent styles of movement in play, but
midway through the project, was changed to a simpler input style controller system.

The environment was produced as a non-linear interconnecting maze, with lots of
interconnecting corridors and opportunities to traverse around the area. Dead ends and
backtracking were avoided, in order to facilitate hunting and evasion style gameplay. Given
that visual cues in the level were limited to activation of echo-location, it was felt
unnecessary to add extra features such as color, lighting and physical assets such as
furniture and other obstacles.

Any evaluation must reasonably ask the question - did the product do what we expected it
to? Given the scope and timescales we were operating within, broadly speaking, we can
assert that as a proof of technical concept it works. It is possible to perceive and traverse the
environment and there are interesting opportunities to incorporate playful interaction among
a variety of games.

Potential commercialisation

This product could be commercialised via a creative media licence from companies
such as Marvel or Disney. The features demonstrated may also be of interest to publishers
who seek investment in experiential and horror titles and may be of more wider interest as a
feature for games which rely heavily on perception and navigation as key features of play.



Youtube URL
https://youtu.be/My_f3NBkEeE

Github Repository
https://github.com/RossFifield/Pulse

Download Link
https://rafifield.itch.io/pulse

https://youtu.be/My_f3NBkEeE
https://github.com/RossFifield/Pulse
https://rafifield.itch.io/pulse

